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Abstract 

 

 In this paper an exponentially fitted modified upwind difference scheme is 

presented for solving differential-difference equations of convection-diffusion type with 

small delay parameter δ  of o( )ε , whose solution exhibits boundary layer behavior. First, 

the singularly perturbed differential-difference equation is replaced by an asymptotically 

equivalent singular perturbation problem. Then, fitted modified upwind scheme is 

developed and a three term recurrence relation is obtained. The resulted tri-diagonal 

system is solved by Discrete Invariant Imbedding Algorithm. The method is 

demonstrated by implementing on several model examples by taking various values for 

the delay parameter and the perturbation parameter. 

 

Key words:  Singular perturbation problems, Differential-difference equations, Boundary 

layer, Delay parameter, finite differences 

 
 
 Introduction 

 

Differential-difference equations, arise in mathematical modeling of various practical 

phenomenon for example in hydrodynamics of liquid helium[6], diffusion in 

polymers[12], micro-scale heat transfer[18], a variety of model for physiological 

processes or diseases etc.  Recently many researchers have started developing numerical 

methods for solving these problems. Chakravarthy and Rao[15 ] presented Numerov 

method for solving singularly perturbed delay differential equations containing both 

negative and positive  shifts.. Kumar and Kadalbajoo [ 7 ] presented a parameter uniform 

numerical method for similar problems. Lange and Miura[9, 10 ] have presented various 
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numerical methods to solve this type of problems. Moreover, numerical analysis of the  

problem under consideration have been done by Pratima and Sharma [16].  

          In this paper, fitted modified upwind finite difference scheme is presented  for 

solving a singularly perturbed delay differential equation with layer behavior. First, the 

singularly perturbed delay differential equation is replaced  by an asymptotically 

equivalent second order singularly perturbed two point boundary value problem. Then, a 

fitting factor is introduced into modified upwind finite difference scheme and a three 

term recurrence relation is obtained. Thomas algorithm is used to solve the tri-diagonal 

system and the stability of the algorithm is also considered. To show the applicability of 

the method, we have applied it on several numerical examples by taking different values 

for perturbation and delay parameters. 

 

2. Description of the Method 

Consider the singularly perturbed differential-difference equation of the form:   

                      ),()()()()( xfxyxbxyxay =+−′+′′ δε              10 << x                        (1) 

  under the interval and boundary conditions 

                              ,)0( α=y    and  β=)1(y                                                         (2) 

where )(),( xbxa and )(xf  are sufficiently smooth functions, 0)( ≤xb , 0<ε <<1 and 

δ =o( )ε  is the delay parameter such that ( ) 0)( >− xaδε  for all ]1,0[∈x . Furthermore, 

α and β  are positive constants.  When δ  is zero equation (1) reduces to a singularly 

perturbed ordinary differential equation which with small ε  exhibits layers and turning 

points depending upon the coefficient of convection term.  The layer is maintained for 

0≠δ  but sufficiently small. 

 

2.1. Left End Boundary Layer Problem  

 

We assume that 0)( >≥ Mxa  throughout the interval [0,1], for some positive constant 

M  and also ( ) ]1,0[,0 ∈∀>− xxaδε . This assumption implies that the boundary layer 

will be at the left end,  that is in the neighborhood of x =0.  

Taking the Taylor series expansion of the term )( δ−′ xy  around x we have 
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      )()()( xyxyxy ′′−′≈−′ δδ            (3)   

Substituting (3) into (1) we get an asymptotically equivalent two point boundary value 

problem:                                               

        )()()()()()( xfxyxbxyxaxy =+′+′′′ε                                             (4) 

with                             βα == y(1)   ,)0(y                                                      (5)   

where )(xaδεε −=′                                       

The transformation from (1) to (4) is admitted because of the condition that δ  is 

sufficiently small. For further discussion on the validity of the transition  one can  refer   

El'sgolts & Norkin[5]. 

From the theory of singular perturbations, it is known that the solution of (4)-(5) is of the 

form [cf. O' Malley[11]  pp. 22-26] 

    )())0((
)(
)0()()( 0

)
)(
)()((

00 εα ε ′+
∫

−+=
−

′
−

oey
xa

axyxy

x

dx
xa
xbxa

                         (6) 

where )(0 xy  is the solution of  the reduced problem 

  β==+′ )1(),()()()()( 000 yxfxyxbxyxa  

By taking Taylor series expansion for )(xa and )(xb  about the point '0' and restricting to 

their first terms, (6) becomes 

   )())0(()()( 0

)
)0(
)0()0((

00 εα ε ′+
∫

−+=
−

′
−

oeyxyxy

x

dx
a
ba

                      (7) 

Now we divide the interval [0,1] into N  equal subintervals of mesh size h=
N
1  so that 

Niihxi ...2,1,0   , == . 

From (7) we have  

   )())0(()()(
)

)0(
)0()0((

00 εα ε ′+−+=
−

′
−

oeyxyxy
ix

a
ba

ii  

i.e.,    )())0(()()(
)

)0(
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−
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−

oeyihyihy
ih
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ba

 

Therefore 
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where ερ ′= /h  

By Taylor’s series expansion  

                                    )()(
2

)()(
)( 21 hOxyh

h
xyxy

xy i
ii

i +′′−
−

=′ +                             (9) 

By substituting (9) in (4),  we get the modified upwind finite difference scheme 
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                    (10) 

where ;)( ii axa =  ;)( ii bxb =  ii yxy =)( , ;)( ii fxf =    

Now introducing a fitting factor  σ  into (10) we get 
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with α=0y  and β=Ny .        (12) 

Multiplying by h  and taking the limit as 0→h  we get 

          ( ) ( ) 0)(2
2

)(1lim 1110
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if  iii yxbxf )()( −  is bounded. 

Therefore,                                                                          
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substituting (8) in (13) and simplifying, we get the value of fitting factor as:                                                                                                               
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From (9) we have 

   ii
i

ii
i

iii fy
h
aah

h
yb

h
aah

h
yah

h
=








+






 −′+








−+






 −′−














 −′ +− 12212 22

2
2

εσεσεσ   (15)    

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research, Volume 4, Issue 10, October-2013                                       1529 
ISSN 2229-5518 
 

IJSER © 2013 
http://www.ijser.org 

where  and )( ii xff =  considered for convenience.  

The above equation can also be written as the three term recurrence relation  

   iiiiii HGyyFyE =+− +− 11                                                        (16) 

 where 
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                         ii fH =                                                                                  (20) 

This three term recurrence relation can be solved by Discrete-Invariant Imbedding 

Algorithm. 

2.2.  Right End Boundary Layer Problem 

 

Now we consider (4)-(5) and assume that 0)( <≤ Mxa  throughout the interval [0,1], 

where M  is a negative constant. This assumption implies that the boundary layer will be 

in the neighborhood of .1=x   

Thus, from the theory of singular perturbations, it is known that the solution of (4)-(5) is 

of the form [cf.O' Malley : 22-26] 
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where )(0 xy  is the solution of  the reduced problem 

                       α==+′ )0(),()()()()( 000 y      xfxyxbxyxa        (22) 

      

By taking Taylor series expansion for )(xa and )(xb  about the point '1' and restricting to 

their first terms, (21) becomes 
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Now we divide the interval [0,1] into N equal subintervals of mesh size 
N

h 1
=   so that 

Niihxi ...2,1,0, == . From (21) we have 
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where ερ ′= /h  

Now we consider the second order  modified upwind finite difference scheme in (4) 
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,,0 βα == Nyy  where σ  is  a fitting factor which is to be determined in such a way that 

the solution of (27) converges uniformly to the solution of (1)-(2). Multiplying (27) by h  

and taking the limits as h→0, we get 
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if iii yxbxf )()( −   is bounded.     

Substituting (26) in (28) and simplifying, we get the value of fitting factor as: 
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From (27) we have 
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where )(),( iiii xbbxaa ==  and )( ii xff =  are considered for convenience. 
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The  equation (30) can also be written as  

                               iiiiii HGyyFyE =+− +− 11                                                          (31) 

 where 
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This three term recurrence relation can be easily solved by Discrete-Invariant Imbedding 

Algorithm. 

3.  Thomas Algorithm 

 

A brief discussion of the Discrete-Invariant Imbedding Algorithm also called Thomas 

Algorithm is presented as follows: 

Consider the relation    

,11 iiiiiii HyGyFyE =+− +−             (36) 

 1-N 2,..., 1,=i ;   

where iii GFE ,,  and iH  are known and  

                    α== )0(0 yy                                                                                             (37a) 

                    β== )1(yyN                                                                                            (37b) 

Consider a difference relation of the form 

                   2,...,2,1-N 1,-N =i     ,1 iiii TyWy += +                                                  (38)                                                                                                

where iW  and iT  corresponding to W( )ix  and )( ixT  are to be determined.  

From (38) we have 

                    111 −−− += iiii TyWy                                                                                     (39) 

Substituting (39) in (36), we get  

                     iiiiiiiii HyGyFTyWE =+−+ +−− 111 )(  
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By comparing (40) and (38) we get the recurrence relations 
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and 

                     
1

1

−

−

−
−

=
iii

iii
i WEF

HTE
T                                                                                      (42) 

To solve these recurrence relations for 1,2,1 −= Ni  , we need to know the initial 

conditions for 0W  and 0T . This can be done by considering (37a) 

                      0100 TyWy +==α  

If we choose 0W =0, then 0T =α . With these initial values, we compute sequentially   iW  

and iT  for 1,2,1 −= Ni   from  (41) and (42) in the forward process and then obtain iy  

in the backward process from (38) using (37a). 

For further discussion on the stability of Thomas Algorithm one can refer (Angel and 

Bellman [1 ], Elsgolt's and Norkin [5] and Kadalbajoo and Reddy [6 ]). 

Here under the assumptions 0b(x)  ,0)( <>xa  and 0))(( >− xaδε , the diagonal 

dominance property iii GEF +≥  and ii GE ≤  ,0>iE  0>iG , holds true and thus 

Thomas algorithm is stable. 

 

4. Numerical Experiments 

 

To illustrate the applicability of the method, two numerical examples with both left-end 

and right-end boundary layer are considered. The computed results are compared with 

exact solution of the problems  and on the problems whose exact solutions are not known, 

for different values of δ  of  o )(ε . 

Example 1. Consider the singularly perturbed differential difference equation  

                    ;0)()()( =−−′+′′ xyxyxy δε  ]1,0[∈x  with 1)0( =y  and .1)1( =y             

The exact solution to this problem is given by 
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Computational results are presented in the tables 1, 2, 3 and 4 for 01.0=ε  and 0.001 for 

different values of .δ  

 
Example 2. Consider an example with variable coefficient singularly perturbed 

differential difference equation with left layer: 

0)()()( 5.0 =−−′+′′ − xyxyexy x δε  with ,1)0( =y  1)1( =y   

The exact solution is not known for this problem. The effect of δ on the left boundary 

layer  is shown with computational results, for its different values in tables 5 and 6. 

 
Example 3. Consider the singularly perturbed differential difference equation  
                   ]1,0[;0)()()( ∈=−−′−′′ xxyxyxy δε  with 1)0( =y  and .1)1( −=y  
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)(2
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=m    and  

)(2
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+
+++

=m  

 
Computational results are presented in the tables 7, 8 and 9 for 01.0=ε  and 0.001 for 

different values of .δ  

 
 
Example 4. Consider an example with variable coefficient singularly perturbed 

differential difference equation with right layer: 

0)()()( =−−′−′′ xyxyexy x δε with ,1)0( =y  1)1( =y   

The exact solution is not known for this problem. The effect of δ on the left boundary 

layer  is shown with computational results, for its different values in 10 and 11. 
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Table-1. Numerical results of Example-1 for ,01.0=ε  ,001.0=δ  N=100 
 

x  Numerical solution Exact Solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.03 0.3901927 0.3900410 1.516e-04 
0.04 0.3877603 0.3874347 3.256e-04 
0.05 0.3901408 0.3897593 3.814e-04 
0.07 0.3975241 0.3971217 4.024e-04 
0.09 0.4054658 0.4050624 4.033e-04 
0.30 0.4993732 0.4989908 3.823e-04 
0.50 0.6089609 0.6086279 3.330e-04 
0.70 0.7425978 0.7423541 2.437e-04 
0.90 0.9055613 0.9054623 9.907e-05 
1.00 1.0000000 1.0000000 0.000e+00 

Table-2. Numerical results of Example-1 for ,01.0=ε  ,003.0=δ N=100 
 

x  Numerical solution Exact Solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.04 0.3932775 0.3932546 2.291e-05 
0.05 0.3925070 0.3923166 1.903e-04 
0.07 0.3983441 0.3980571 2.869e-04 
0.09 0.4061028 0.4058020 3.008e-04 
0.20 0.4528155 0.4525184 2.971e-04 
0.40 0.5520024 0.5517307 2.717e-04 
0.60 0.6729157 0.6726949 2.208e-04 
0.80 0.8203144 0.8201798 1.346e-04 
1.00 1.0000000 1.0000000 0.000e+00 

 
 
Table-3. Numerical results of example-1 for ,001.0=ε  ,0003.0=δ  N=100 
 

x  Numerical solution Exact Solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.02 0.3771424 0.3753846 1.757e-03 
0.03 0.3809138 0.3791565 1.757e-03 
0.04 0.3847229 0.3829663 1.756e-03 
0.06 0.3924559 0.3907012 1.754e-03 
0.08 0.4003442 0.3985923 1.751e-03 
0.20 0.4511179 0.4494008 1.717e-03 
0.40 0.5504496 0.5488774 1.572e-03 
0.60 0.6716531 0.6703736 1.279e-03 
0.80 0.8195444 0.8187634 7.809e-04 
1.00 1.0000000 1.0000000 0.000e+00 
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Table-4. Numerical results of example-1 for ,001.0=ε  0008.0=δ  N=100 
 

x  Numerical solution Exact Solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.02 0.3771424 0.3753846 1.757e-03 
0.03 0.3809138 0.3791565 1.757e-03 
0.04 0.3847229 0.3829663 1.756e-03 
0.06 0.3924559 0.3907012 1.754e-03 
0.08 0.4003442 0.3985923 1.751e-03 
0.20 0.4511179 0.4494008 1.717e-03 
0.40 0.5504496 0.5488774 1.572e-03 
0.60 0.6716531 0.6703736 1.279e-03 
0.80 0.8195444 0.8187634 7.809e-04 
1.00 1.0000000 1.0000000 0.000e+00 

 
 
Table-5. Numerical results for example-2 with ,01.0=ε  100=N , different values of δ  
 
 

x  Numerical Solutions 
000.0=δ  δ =0.001 δ =0.002 δ =0.003 δ =0.004 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.02 0.3837599 0.3622626 0.3402440 0.3182891 0.2980169 
0.04 0.3068927 0.3013019 0.2968560 0.2937033 0.2918980 
0.06 0.3016131 0.3001263 0.2990281 0.2982371 0.2976445 
0.08 0.3062093 0.3055005 0.3048846 0.3043271 0.3038031 
0.10 0.3123426 0.3117661 0.3112130 0.3106767 0.3101567 
0.20 0.3471893 0.3466320 0.3460832 0.3455471 0.3450310 
0.40 0.4360086 0.4354570 0.4349182 0.4343990 0.4339123 
0.60 0.5602958 0.5597999 0.5593202 0.5588658 0.5584540 
0.80 0.7383421 0.7380000 0.7376729 0.7373696 0.7371067 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
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Table-6. Numerical results of example2 for ,001.0=ε  N=100, different values of δ  
 

x  Numerical Solutions 
0001.0=δ  δ =0.0002 δ =0.0003 δ =0.0004 δ =0.0008 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 
0.01 0.2792305 0.2792217 0.2792170 0.2792148 0.2792134 
0.03 0.2848682 0.2848681 0.2848681 0.2848681 0.2848681 
0.05 0.2906957 0.2906956 0.2906955 0.2906955 0.2906955 
0.07 0.2967024 0.2967023 0.2967023 0.2967023 0.2967023 
0.09 0.3028952 0.3028951 0.3028951 0.3028951 0.3028951 
0.10 0.3060636 0.3060635 0.3060635 0.3060634 0.3060634 
0.20 0.3406137 0.3406136 0.3406136 0.3406136 0.3406136 
0.40 0.4289314 0.4289313 0.4289313 0.4289312 0.4289312 
0.60 0.5533208 0.5533207 0.5533207 0.5533207 0.5533207 
0.80 0.7330194 0.7330193 0.7330193 0.7330193 0.7330193 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 1.0000000 

 
 
 
Table-7.  Numerical results example-3 for 002.0,01.0 == δε ,N=100 
 

x  Numerical solution Exact Solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.20 0.8207411 0.8206521 8.898e-05 
0.40 0.6736160 0.6734699 1.460e-04 
0.60 0.5528644 0.5526845 1.798e-04 
0.80 0.4537585 0.4535617 1.967e-04 
0.90 0.4108110 0.4105821 2.289e-04 
0.91 0.4064063 0.4061459 2.604e-04 
0.93 0.3955821 0.3951281 4.540e-04 
0.95 0.3720079 0.3708222 1.185e-03 
0.97 0.2774855 0.2740694 3.416e-03 
1.00 -1.0000000 -1.0000000 0.000e+00 
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Table-8: Numerical results for example-3, 01.0=ε , 003.0=δ , N=100 
 

x  Numerical solution Exact Solution Absolute Error 
0.00 1.0000000 1.0000000 0.000e+00 
0.20 0.8208852 0.8208084 7.678e-05 
0.40 0.6738526 0.6737265 1.260e-04 
0.60 0.5531556 0.5530004 1.552e-04 
0.80 0.4540771 0.4539072 1.699e-04 
0.91 0.4062358 0.4059562 2.796e-04 
0.93 0.3939262 0.3933562 5.700e-04 
0.95 0.3650479 0.3635169 1.531e-03 
0.97 0.2552733 0.2511992 4.074e-03 
0.98 0.0969142 0.0910572 5.857e-03 
1.00 -1.0000000 -1.000000 0.000e+00 

 
Table-9: Numerical results for example-3,with 001.0=ε ,  008.0=δ  
 

x  Numerical solution Exact Solution Absolute Error 
0.00 1.0000000 1.0000000 0.00e+00 
0.20 0.8195506 0.8190244 0.0005.261e-04 
0.40 0.6716632 0.6708011 0.0008.621e-04 
0.60 0.5504620 0.5494025 0.001.059e-03 
0.80 0.4511315 0.4499741 0.001.157e-03 
0.91 0.4043615 0.4031817 0.001.179e-03 
0.93 0.3963943 0.3952123 0.001.181e-03 
0.95 0.3885841 0.3874005 0.001.183e-03 
0.97 0.3809276 0.3797430 0.001.184e-03 
1.00 -1.0000000 -1.0000000 0.000e+00 

 
Table-10. Numerical results for example-4 with ,01.0=ε  100=N , different values of 
δ  

x  Numerical Solutions 
00.0=δ 1 δ =0.003 δ =0.006 δ =0.008 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 
0.20 0.8371138 0.8375826 0.8383120 0.8387939 
0.40 0.7232342 0.7239635 0.7250829 0.7258210 
0.60 0.6413734 0.6422490 0.6435791 0.6444547 
0.80 0.5811565 0.5821147 0.5835583 0.5845075 
0.90 0.5570088 0.5579934 0.5594779 0.5604928 
0.91 0.5547757 0.5557627 0.5572619 0.5583385 
0.93 0.5504018 0.5513940 0.5530442 0.5545947 
0.95 0.5461472 0.5471815 0.5501803 0.5541782 
0.97 0.5420377 0.5445834 0.5593688 0.5740964 
0.99 0.5859178 0.6073731 0.6865318 0.7232474 
1.00 -1.0000000 1.0000000 1.0000000 1.0000000 
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Table-11. Numerical results for example-4 with ,001.0=ε  100=N , different values of 
δ  

x  Numerical Solutions 
00.0=δ 01 δ =0.0003 δ =0.0006 δ =0.0008 

0.00 1.0000000 1.0000000 1.0000000 1.0000000 
0.20 0.8356445 0.8356568 0.8357367 0.8358666 
0.40 0.7213170 0.7213359 0.7214591 0.7216600 
0.60 0.6394080 0.6394306 0.6395776 0.6398177 
0.80 0.5792895 0.5793140 0.5794742 0.5797360 
0.90 0.5552104 0.5552355 0.5553998 0.5556685 
0.91 0.5529845 0.5530097 0.5531744 0.5534436 
0.93 0.5486249 0.5486502 0.5488155 0.5490859 
0.95 0.5443848 0.5444102 0.5445762 0.5448496 
0.97 0.5402603 0.5402859 0.5404757 0.5410067 
0.99 0.5364624 0.5388005 0.5536257 0.5761217 
1.00 1.0000000 1.0000000 1.0000000 1.0000000 
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Figure 1: Graph of numerical solution of Example 1 for different values of δ. 
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Figure 2: Graph of numerical solution of Example 2 for different values of δ. 
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Figure 3: Graph of numerical solution of Example 3 for different values of δ. 
 
 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

delta=0.0003

delta=0.0001

delta=0.0006

delta=0.008

 
 
Figure 4: Graph of numerical solution of Example 4 for different values of δ. 
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Discussion and Conclusion 
 
We have presented  fitted modified upwind scheme to solve  singularly perturbed 

differential equations. The scheme is repeated for different choices of the delay 

parameter, δ  and perturbation parameter ε . The choice of δ  is not unique, but can 

assume any number of values satisfying the condition, 0< 1<<δ . The mesh size h is 

fixed so as to reduce the amount of computations,  and the value of δ  varies. The 

solutions are calculated for all the values of h but only few values have been reported. 

The numerical results tabulated in the tables 1-11 are in the support of the theory. The 

graphs of the solution for the considered examples are plotted for different values of δ . 
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